Transport and retention of colloidal particles in partially saturated porous media: effect of ionic strength

Yuniati Zevi, Annette Dathe, Bin Gao¹, Wei Zhang, Brian K. Richards*, Tammo S. Steenhuis**

Department of Biological & Environmental Engineering, Cornell University

¹present address: Department of Agricultural & Biological Engineering, University of Florida

* pre-publication corresponding author bkr2@cornell.edu; 607-255-2463
** post-publication corresponding author tss1@cornell.edu; 607-255-2489

Mailing address: Riley-Robb Hall, Cornell University, Ithaca, NY 14853-5701 USA

Second Revision for Water Resources Research - MS No. 2008WR007322

AGU INDEX TERMS: Vadose zone (1875), soils (1865), groundwater quality (1831), groundwater transport (1832)

KEYWORDS: colloids, facilitated transport, sand, contact angle, attachment
Abstract

We directly observed pore-scale attachment of fluorescent synthetic polystyrene colloids (1.0 µm dia.) in a partially-saturated sand pack (pore space saturation ranging from 0.7 to 0.9) at four solution ionic strengths (0, 1, 100, 200 mM NaCl). Sequential confocal laser microscope images were analyzed to quantify colloid retention, particularly at air/water-meniscus/solid (AWmS) interfaces. We concurrently measured effluent colloid concentrations to determine overall matrix retention. Ionic strength had no effect on meniscus contact angles (26.7±3.7 degrees) or surface tension (63-67 mN/m), both important components of the capillary forces thought to play the primary role in retention at the AWmS interfaces. AWmS interfaces attachment was greatest at 1mM, with the 0mM ionic strength reducing attachment by half. Increasing ionic strength to 100 and 200mM markedly decreased colloid retention at the AWmS interfaces due to observed increased competing attachment at grain surfaces (solid/water interface) that reduced the number of colloids available for AWmS interface attachment.
Introduction

Colloid-facilitated transport, which has received considerable attention in recent years, can significantly enhance the movement of contaminants to groundwater in both saturated and unsaturated soils (Ouyang et al., 1996; Šäfer et al., 1998; Kretzschmar and Sticher, 1998; Sen and Khilar, 2006). The vadose (or unsaturated) zone of soil profiles plays an important buffering role in mitigating contaminant transport to groundwater, but our understanding of colloid retention and remobilization in this zone is far more limited than the better understood mechanisms in saturated groundwater zones (Weisbrod et al. 2003).

Findings of colloid transport and retention have been primarily based on laboratory column breakthrough curves which are limited in that they represent the aggregate effect of all processes occurring in the test column and cannot uniquely identify the various mechanisms of colloid retention or mobilization. However, direct pore-scale visualization is a promising approach that can help discern specific mechanisms, but relatively few unsaturated visualization experiments have been conducted to date. Using pore micromodels, Wan and Wilson (1994) and Sirivithayapakorn and Keller (2003) concluded that colloids were retained at the air-water (AW) interface, but Chen and Flury (2005) did not observe interception and attachment of mineral colloids at the AW interface. Gao et al. (2006) found that colloids were retained both by straining in thin water films around sand grains and by trapping in immobile water zones, with subsequent pendular ring expansion causing sudden re-release of colloids. Using 3D sand flow chambers, Crist et al. (2004, 2005) and Zevi et al. (2005, 2006) found that colloids were primarily retained at the locations where water menisci connecting sand grains diminish to thin water films, and termed this region as the air-water meniscus-solid (AWmS) interface.
The mechanisms of colloid retention at the AWmS interface are not well known. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (e.g., Schäfer et al, 1998; Sirivithayapakorn and Keller 2003; Auset and Keller, 2006; Lazouskaya et al., 2006), cannot explain the retention of anionic hydrophilic colloids at the AWmS interface (Crist et al. 2005), suggesting that there must be additional forces retaining colloids at this interface. Several authors (Sirivithayapakorn and Keller, 2003; Wan and Wilson, 1994, Zevi et al., 2005) have proposed capillary forces to explain colloid attachment at AW interfaces as well as straining in thin water films (Gao, et al., 2006; Wan and Tokunaga, 1997), mainly because capillary force energy potentials can be several orders of magnitude greater than those calculated with DLVO forces (Kralchevsky, et al., 2001; Kralchevsky, et al., 2006; Kralchevsky and Nagayama, 2000; Sur and Pak, 2001; Gao et al 2008). Most studies of unsaturated colloid transport have quantified the forces on colloidal particles at interfaces, liquid films and biomembranes under static conditions (Kralchevsky, et al. 2001; Gao et al 2008; Lazouskaya et al. 2006; Lazouskaya and Jin 2008; Kralchevsky and Nagayama 2000). Recenly Gao et al. (2008) and Shang et al. (2008) investigated how capillary and DLVO forces at the AWmS interface affect colloid retention in unsaturated porous media. Although slightly different approaches were used in these studies, the capillary forces were two orders of magnitude greater than the DLVO forces. In addition, Shang et al. (2008) determined that capillary forces were greater than hydrodynamic forces. More recently, Shang et al. (2009) found that capillary forces exerted by moving air/water interfaces exceed DLVO forces and can detach stationary particles.

Capillary forces at the AWmS interface are exerted on colloids deforming the meniscus surface film (Gao et al. 2008). The total capillary force can be decomposed into a normal force acting perpendicular to the grain surface and a lateral force acting parallel to the grain surface. The normal force component generates the friction force that acts
to retain the colloid at the interface. Conversely, when the lateral capillary force exceeds the friction force (or when there is no friction force such as when the water film is thicker than the colloid diameter (Sur and Pak, 2001)), the colloid is pushed back into the bulk solution. Gao et al (2008) further argued that fewer colloids would be retained at AWmS interfaces on smooth grain surfaces as compared to rougher surfaces, which was subsequently confirmed by Morales et al. (2009).

The effect of changing solution ionic strength on colloid retention at the AWmS interface is unknown. Increasing ionic strength lessens the magnitude of the energy barrier (as calculated by DLVO forces), and leads to progressively more favorable conditions for colloid retention on solid surfaces in saturated systems (Compere et al. 2001) and at air-water interfaces in unsaturated systems (Saiers and Lenhart, 2003b). Breakthrough studies have shown that increasing ionic strength generally increases colloid retention (Jewett et al., 1995; Li and Logan, 1999; Compere et al., 2001; Saiers and Lenhart, 2003b). It is possible that changes in ionic strength could alter the nature and magnitude of capillary interfacial interaction energies by changing the surface tension (σ), although the effect is likely small at typical environmental levels (Poling et al. 2001, Li et al. 1999) and/or contact angles (θ) between the water phase and solid surfaces. Li et al (1999) calculated that NaCl concentrations up to 1 Molal slightly increased surface tension to 74 mN/m.

The goal of these experiments was to thus to define the effects of increasing ionic strength on colloidal attachment at the AWmS interface. Our objectives were to 1) use pore-scale confocal microscope visualization to directly observe and quantify changes in colloidal AWmS interface attachment in a partially-saturated sand chamber at different solution ionic strengths (0, 1, 100 and 200 mM), and 2) use concurrent breakthrough curve determinations to measure trends in overall matrix colloid retention for comparison with visualization measurements.
Material and Methods

Experimental system

Synthetic polystyrene microspheres (1.0 µm diameter; Magsphere Inc, Pasadena, CA) were used as experimental colloids because of their high confocal microscope signal intensity. Colloid input concentrations were 1.8 x10^8 particles/mL, with the pH of the colloid suspension adjusted to 5.7 with dilute HCl/NaOH additions. Suspensions were prepared by diluting the concentrated stock suspension 1:1250 with NaCl solution to achieve ionic strengths of 0, 1, 100 and 200 mM. Rhodamine B was added at less than 2.1 x 10^-5 M (a concentration expected to reduce pure water surface tension by less than 0.6%, interpolating from Ghosh and Nath, 1932) to allow imaging of the water phase. Although subsequent results showed no effect on attachment behavior, a portion of our experiments used colloids that were prewashed by centrifuging the stock suspension, decanting, and resuspending in DI water as described by Bangs and Merza (1995). This was done to remove the unspecified surfactant added by the colloid manufacturer to the stock suspension (0.01% w/w concentration). In any case, the concentration of surfactant from unwashed colloids in the diluted flow solutions would have been negligible at approximately 0.08 parts per million.

The porous medium used was 0.4-0.6 mm diameter quartz sand (Unimin Corp.), acid washed (HNO₃) and rinsed with deionized water as per Lenhart and Saiers (2002). The average porosity of the sand pack was 0.354 ± 0.026 cm³/cm³ as determined from the bulk density (ρ_b = 1.70 g/cm³) and sand particle density (ρ_s = 2.65 g/cm³).

The schematic of the experimental apparatus (explained in greater detail in Zevi et al. (2006)) is shown in Figure 1. An acrylic flow chamber (10 mm x 30 mm x 3 mm;
capacity of 1.6 g sand) was fitted with porous ceramic plates (40-60 μm pore size; R&H Filter Co. RH-1000) at the inlet and outlet to assure unsaturated flow conditions. Two syringe pumps supplied water and colloid suspension at the inlet, and a peristaltic pump removed the flow from the outlet. The injection assembly consisted of syringes I and II, inlet tubing components (designated A, B, and C), and one Y-fitting. Tubing A and B (inside diameter 1.14 mm) linked the syringes to the Y-fitting, while C connected the fitting to the chamber inlet. The total length of inlet tubing (either A+C or B+C) was 31 cm. Syringe I was filled with background solution (adjusted to target ionic strength and pH), and Syringe II was filled with the tracer or colloid suspension.

Background solution was pumped from Syringe I until the porous medium was fully saturated. The effluent pump was then activated to desaturate the porous media. The effluent flow rate was measured until the inflow and outflow equilibrated at approximately 0.1 mL/min. Syringe I was then stopped as the second syringe pump began to inject the Syringe II solution (either tracer or colloid) into the column through tubing B+C. The time when the tracer or colloid solution reached the porous plate was established as t = 0. After the completion of Syringe II, the injection of background solution was resumed.

Experimental methods

In addition to direct observation detailed below, colloid and tracer breakthrough experiments were performed by sampling effluent colloid concentrations at 2 minute intervals, with samples diluted with known volumes of distilled water for subsequent analysis. Breakthrough experiments were performed in duplicate; some were performed without taking simultaneous confocal images. Breakthrough curves with no sand pack in place were run to determine system (i.e. chamber/plate/tubing) colloid retention. Bromide breakthrough experiments were also performed (25 mg Br/L input solution) to
determine the interstitial velocity and dispersivity of the water in the sand pack using the convective-dispersion equation as implemented in the CXTFIT2 program. Effluent colloid concentrations were analyzed by measuring fluorescence at excitation and emission wavelengths of 485 nm and 538 nm respectively, using a Fluoroskan Ascent FL 2.5 fluorimeter. Effluent bromide concentrations were analyzed using a Dionex ICS 2000 ion chromatography system with an IonPac AS18 column.

Breakthrough curves of colloids were adjusted for travel time and the retention of the colloids in the porous plates and tubing. In order to determine final mass balances, colloids sorbed onto the sand pack and those retained in the apparatus apart from the sand pack were quantified. At the end of each test, the sand pack was removed from the chamber for moisture content analysis. The sand was then placed in 1 ml DDI water and sonicated for 10 min, with the resulting aliquot analyzed for colloid (or Br) content. Colloids remaining in the tubing and porous plates were rinsed out with a known volume of distilled water and measured. Experiments with tubing and an empty chamber showed that the system had a consistent loss of 3.5\% of injected colloids, an amount that agreed with the amount recovered after back-flushing. With these results, the mass balances and breakthrough calculations were normalized to represent only the colloids that entered the chamber and were either recovered in the effluent or retained on the sand. Colloid travel times were consistently 20 sec. through the porous plate and 4.7 min. through the outlet tube, with little variance among the four replicates. Breakthrough times were therefore adjusted by these quantities to obtain the true sand pack travel times.

Surface tension measurements were made in triplicate at 25\°C with a Model 21 Surface Tensiomat (Fisher Scientific, Pittsburgh, PA) fitted with a 19-mm diameter platinum-iridium ring. Solutions were placed in a 50 mm diameter shallow glass dish and the ring was inserted in the middle of the dish to avoid edge effects. The ring was raised through
semi-manual operation of the torsion mechanism, and the tension reading at the instant of surface detachment was noted.

The zeta potential of the sand was estimated from measurements made on colloidal-sized sand fragments as per Saiers and Lenhart (2003b), with fragments obtained by sonicating sand submerged in DI water for 30 min. The resulting aliquots were filtered (0.45 µm membrane filter) and adjusted to match experimental ionic strengths with NaCl additions prior to measurement. The zeta potential was determined with a Lazer Zee Model 501 meter (PenKem, Bedford Hills, NY). Johnson (1999) found good agreement when comparing a similar microfragment approach with streaming zeta potential determinations for sand.

Pore-scale imaging and analysis

The visualization system was a Leica TCS SP2laser scanning confocal microscope with HC PL APO CS 10.0 x objectives with a numerical aperture of 0.4, yielding a resolving power of 0.37 µm. The system can record either a time series of images at one plane or 3-D representations composed of images taken at 1 µm depth intervals. The microscope obtained separate images of the colloids, water, and grains using three spectral channels. In the first channel, emissions from the fluorescent colloids excited at 488 nm (argon laser) were recorded in the range of 500 to 540 nm. In the second channel, the water phase stained with Rhodamine B was excited at 543 nm (green HeNe laser) with the emission recorded in the range of 555 to 650 nm. The third channel detected transmitted light to show the location of the sand grains. These three channels were acquired as 8 bit grayscale images, with the argon and HeNe channels displaying the fluorescence in false-colored yellow-green and red, respectively.

For quantification purposes, the image analysis procedure developed by Zevi et al. (2006) was used for counting colloids in image stacks acquired using ImageJ software.
The procedure consisted of transforming the confocal microscope images to black and white (binary) images by thresholding the argon channel images (of colloid locations), and separating pixels in order to identify them as either colloid or background. In the thresholding process, gray values recorded by the argon channel ranging from 0 (black) to 256 (white) were separated by a specified threshold gray value. The threshold value was chosen empirically such that the outline of colloids in thresholded images appeared the same as in the original images. No further image enhancement took place except where interference was encountered from false light reflecting from the water surface.

After thresholding, the regions with colloid retention near observed AWmS interfaces were selected. The regions were applied to all the sequential images in a stack, thus allowing automatic counting. The Boolean “and” operator was used to compare sequential images, detecting all colloid pixels which appeared at exactly the same position (and thus could be judged as retained). Pixels were counted as colloids when two or more pixels were connected using the 8-neighborhood method. The total area of colloids was then calculated as the product of the number of pixels and the pixel size. A simple macro was used to automate the counting process. Colloid concentrations were expressed as area of colloids per unit interface length ($\mu m^2/\mu m$).

The imaging resolution, image size, imaging threshold, number of sequences, regions, frames per sequence and total elapsed time are summarized in Table 1.

Contact angle measurement

Contact angle measurements were obtained using reconstructed images sectioned in succession along the z axis such as those shown in Figure 2.b and 2.c. From these images we determined the angle of tangent line to the grain and meniscus (derivation shown in supplementary material). The difference between the two angles of the tangent
lines was the contact angle. The measurements were repeated for ten different cross sections because of variation observed between individual measurements.

Results

Volumetric sand pack water contents determined gravimetrically at the conclusion of experiments were 0.25-0.26 g/cm³ (influent end) and 0.30-0.33 g/cm³ (effluent end) of the sand pack, corresponding to pore saturation extents of 0.70-0.74 and 0.85–0.94, respectively. There were no significant differences in either zeta potential or surface tension from washed vs. unwashed colloids, so the values shown in Table 2 show the mean of all measurements of both washed and unwashed colloids. The zeta potential of colloids increased from -62.4 mV to -22.6 mV as the ionic strength increased from 0 to 200mM. Similarly, the zeta potential for sand increased from -51.8 mV at 0mM ionic strength to -11.5 mV for 200mM. The increasing solution NaCl concentration appeared to slightly increase surface tension from 63.2 to 66.8mN/m, although the variability among several replicates was substantial enough to prevent this increase from being significant.

The retention of the colloids was observed by measuring both the effluent colloid concentration and by pore scale imaging. Colloid attachment at the pore scale is shown as still images, videos, and is summarized as plots of cumulative colloid attachment over time. For each treatment, either one or two sets of experiments were conducted at pores where colloid retention could be clearly observed. In addition to still images, the pore movement of colloids was recorded as video sequences which are available as auxiliary material.

Breakthrough curves

Breakthrough curves represent an aggregated response of the various mechanisms affecting colloid retention in the sand column. In general, breakthrough curves for both the Br tracer (Figure 3) and colloids (Figure 4) consisted of an initial zero effluent
concentration phase, a rapid increase phase to the peak level, and then a tailing phase after the colloid pulse ended and background solution was resumed. The maximum breakthrough concentration for colloids was consistently lower than that for nonadsorbed bromide, indicating retention of colloids in the sand column.

The initial breakthrough of colloids and bromide occurred simultaneously approximately 3 minutes after injection, consistent with an expected velocity of 1.0 cm/min based on a flux of 0.1 ml/min, chamber length of 30 mm, chamber cross section of 10 mm x 3 mm, and a volumetric water content of 0.35. Tracer breakthrough analysis shows that the average pore water velocity in the sand pack was 1.0 cm/min, and the dispersion coefficient was 0.065 cm²/min.

Colloid breakthrough curves (Figure 4) indicated that increasing ionic strength resulted in increased colloidal retention within the porous sand medium (Table 3). This trend was best defined when comparing the 0 and 200mM treatments. The reason for the increased variance between replicate runs at 1 and 100mM ionic strengths is not known. Comparison of fractional effluent recovery of colloids (Table 3) showed a similar trend, with the variation among replicates greatest for 1 and 100mM ionic strengths but a significant (P<0.05) difference only between the 0 vs. 200mM treatments.

Pore-scale imaging

Pore-scale images and video sequences are presented in the supplementary material. The mean water meniscus/grain contact angle measured from 10 cross-sectional images at each ionic strength was 26.7±3.7 degrees, with no observable effect of ionic strength or colloid prewashing (Table 4). Time series plots of the areas of attached colloids at
AWmS interfaces calculated via image analysis are presented in Figure 5 for experiment Series 1 to 7. Each plot represents mean values from replicate series, and \(t=0 \) represents the arrival of the first observed colloid at the specified location. Interruptions in imaging due to the saving file process varied for every series and led to the observed data breaks. In general, colloid retention at the AWmS interface decreased as ionic strength increased, with results similar for both washed and unwashed colloids and thus aggregated here. The maximum retention of colloids at observed AWmS interfaces was greatest at ionic strengths of 1mM, with end-of-sequence values of 1.6 to 2 \(\mu m^2/\mu m \) for Series 2 and 5. Cumulative retention at the same timepoint for 0 mM ionic strength was somewhat lower at circa 0.75 \(\mu m^2/\mu m \). The 100mM experiments had cumulative attachment extents of approximately 0.2 \(\mu m^2/\mu m \) (Series 3 and 6), while 200mM ionic strengths had the lowest cumulative attachment levels of 0.05 to 0.07 \(\mu m^2/\mu m \) for Series 4 and 7.

Discussion

Each of the two approaches for quantifying retention used offers advantages and limitations. The limited working distance under the confocal microscope objective required a thin chamber in which small changes in packing could result in relatively large changes in breakthrough, which may have contributed to the variation seen with some treatments. On the other hand, while visualization gives powerful pore-scale insights, we are able to visualize only a limited number of interfaces and thus the absolute magnitude of our pore-scale AWmS retention determinations could differ from the true overall extent. However, the general trends determined by pore scale observations vs. breakthrough experiments should be valid.

Increasing ionic strength affected neither the contact angle which remained at 25 degrees nor the surface tension of approximately 65mN/m, and thus the magnitude of
the capillary forces primarily responsible for attachment at the AWmS interface would have been minimally affected by changes in ionic strength. Nevertheless, the retention of colloids at the AWmS interface decreased dramatically with increasing ionic strength from 1 to 100-200 mM (Figure 5). The somewhat lower attachment extent observed at 0 mM ionic strength was surprising, but may be related to how we hypothesize that colloids get to the AWmS interface in the first place. Bradford et al. (2007, 2008, 2009) and others (Torkzaban et al. 2007, 2008; Tong et al. 2008) held that colloids roll and slide on the grain surface and are funneled by hydrodynamic drag forces into wedge-shaped grain-grain contact points in saturated porous media. It is possible that the same idea may hold true for movement of colloids toward the similarly-shaped AWmS interface in unsaturated conditions. Since 0 mM ionic strength is extremely dilute and minimal colloids will attach to grain surface (as per the DLVO energetics diagram in Figure 6; calculation approach elaborated in supplementary material), there may not be enough colloids close to the grain surface to be funneled into the AWmS. When ionic strength increases slightly (1 mM case), more colloids would present near the surface and available to be funneled to the AWmS interface. However, further increases in ionic strength would cause the adhesive forces between colloids and grains prevail, reducing the amount of colloids that can be funneled to AWmS by hydrodynamic drag. There may thus be a nonlinear effect of ionic strength on attachment at the AWmS interface.

In contrast to the patterns seen at the AWmS interface, the breakthrough curves suggested increasing colloid retention with increasing ionic strength, consistent with numerous literature findings of increased ionic strength reducing the magnitude of the energy barrier near the solid surface, thus inducing more favorable conditions for colloid attachment at the grain surface. Calculations of DLVO interfacial energies using measured sand and colloid properties (summarized in Figure 6) indicate significant
lessening of repulsions at higher ionic strengths, which would facilitate increased attachment throughout the matrix.

Given these apparently conflicting findings of decreased retention at the AWmS interface but increased overall matrix retention, we examined the composed 3D images taken at circa 1200 seconds into the experiments. Unlike the images used for quantification of the retention of colloids at the AWmS interface, the 3D images enable the viewer to see other focal planes, including the solid-water interface. The 3D figures showed that at low ionic strengths, colloids were essentially only attached at the AWmS interface (Figure 7a and 7b, 1mM). In contrast, at higher ionic strengths, the colloids were retained at much greater amounts across the submerged grain surfaces (i.e. at the – solid-water (SW) interface), and to a much lesser extent at the AWmS interface (Figure 7c, 100mM). Similarly, the meniscus cross-section in Figure 7d shows colloid distribution across grain surfaces at 100mM ionic strength. As such, it is likely that colloid retention at the AWmS interface decreased under increasing ionic strength conditions because of increased competition from grain surface retention sites whose retention energetics became more favorable and whose relative areas available for attachment were much greater. Thus ionic strength affected the extent of retention at the AWmS indirectly by reducing the number of colloids available to preferentially attach to that interface.

It is important to note that our results differ from Lazouskaya et al (2006) who found no effect of increasing ionic strength at the AWmS interface in the microchannel used for their study. However, in their case, there was no competitive retention of colloids by the WS interface in the smooth glass channel; the disparity in surface roughnesses of the respective medium surfaces may have contributed to the divergence of results between their study and ours. Indeed, examination of Figure 7c suggests that colloid distribution on the grain surface in our study was not uniform but clustered, which suggests that grain surface irregularities and roughness may be an important physical property influencing colloid retention (Morales et al. 2008).
Conclusions

Direct visual quantification showed that increasing ionic strength reduced retention at the AWmS interface by increasing the favorability of competing attachment at submerged grain surfaces (solid-water interfaces) and thus reducing the number of colloids available to approach and attach at the AWmS interface. This observation of tradeoffs between differing interfaces illustrates the advantage of direct visual quantification over inferential observations such as breakthrough curves.

ACKNOWLEDGMENTS This research was supported by funding from the USDA-National Research Initiative (Project 2005-03929) and the National Science Foundation (Project 2006-0635954). The authors acknowledge the expert guidance of Carol Bayles, manager of the Cornell University Biotechnology Center’s Microscopy and Imaging Facility.

References

FIGURE CAPTIONS

Figure 1. Schematic of experimental apparatus.

Figure 2. An example of overlaid confocal microscope image: a) Top view of three sand grains joined by pendular rings of water, with notable attachment of colloids (light) at AWmS interfaces. (image size 795 x 795 μm), (b) cross-section image taken along Plane I: cross section of water film covering sand grain, thickening at pendular rings, with colloid attachment at AWmS interfaces (image size 795 x 272 μm) and (c) similar cross-section along Section –II (image size 795 x 272 μm).

Figure 3. Mean and standard deviation of replicate bromide tracer breakthrough curves. X axis error bars represent slight variation in sampling time between replicate runs.

Figure 4. Breakthrough curves for polystyrene colloids at differing ionic strengths.

Figure 5. Time series of colloid retention (μm^2/μm) at the AWmS interface measured from confocal microscope image sequences. Each plot series represents the mean of replicate time series experiments. Legend suffix a represents unwashed colloids and b washed colloids. Solution ionic strengths of 0 mM (Series 4, orange), 1 mM (Series 1, light green and 5, dark green), 100 mM (Series 2, light blue and 6 dark blue) and 200 mM (Series 3 dark red and 7 medium red).

Figure 6. Total DLVO interaction energy (∆G^{TOT}) of polystyrene colloids interacting with the sand-water interface (SWI) in 0 mM, 1 mM, 100 mM, and 200 mM NaCl solutions.

Figure 7. Effect of ionic strength on colloids retention at the AWmS and solid-water interfaces: a) at 1mM, colloid retention (light) concentrated at AWmS of meniscus (red) between two sand grains on left and right sides of image; b) cross section of interface shows similar concentration at interface; c) at 100 mM, colloid retention visible scattered across the submerged sand grain surfaces; d) meniscus cross-section similarly shows colloid distribution across grain surfaces.
Table 1. Experimental conditions for each experiment using synthetic 1.0 μm polystyrene colloids.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Colloids pre-washed?</th>
<th>Ionic Strength (mM)</th>
<th>Resolution (μm/pixel)</th>
<th>Image size (pixels)</th>
<th>Threshold level</th>
<th>Time step (sec)</th>
<th>Replicates</th>
<th>Regions per rep</th>
<th>Total Sequences</th>
<th>Frames per seq.</th>
<th>Total elapsed time (m)</th>
<th>BTC replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>1</td>
<td>0.73</td>
<td>100</td>
<td>2.0</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>100</td>
<td>0.37</td>
<td>1024x512</td>
<td>50</td>
<td>1.0</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>242(3), 121(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>200</td>
<td>0.37</td>
<td>1024x1024</td>
<td>38</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>61(8) rep 1</td>
<td>61(1), 5(121)</td>
<td>19,22</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>0</td>
<td>0.37</td>
<td>1024x1024</td>
<td>110</td>
<td>1.5</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>61</td>
<td>15(2)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>1</td>
<td>0.37</td>
<td>1024x1024</td>
<td>110</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>96 (1), 121 (5)</td>
<td>31(2)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>100</td>
<td>0.37</td>
<td>1024x1024</td>
<td>100</td>
<td>1.5</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>121</td>
<td>30(2)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>200</td>
<td>0.37</td>
<td>1024x1024</td>
<td>90</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>121</td>
<td>26(2)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Measurement of zeta potential (colloids and sand fragments), solution surface tension, and measured water meniscus/grain contact angles.

<table>
<thead>
<tr>
<th>Solution ionic strength (mM)</th>
<th>Zeta potential (mV)</th>
<th>Surface tension (mN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>colloid</td>
<td>sand</td>
</tr>
<tr>
<td>0</td>
<td>-62.4 ± 3.4</td>
<td>-51.8 ± 2.1</td>
</tr>
<tr>
<td>1</td>
<td>-47.3 ± 2.3</td>
<td>-41.2 ± 2.8</td>
</tr>
<tr>
<td>100</td>
<td>-27.6 ± 2.5</td>
<td>-19.6 ± 3.2</td>
</tr>
<tr>
<td>200</td>
<td>-22.6 ± 2.2</td>
<td>-11.5 ± 2.9</td>
</tr>
</tbody>
</table>

Table 3. Fractional effluent colloid recovery from colloid breakthrough curves (unwashed colloids). Mass balance was adjusted for the 3.5% of input concentration retained by empty chamber.

<table>
<thead>
<tr>
<th>Solution ionic strength (mM)</th>
<th>Fraction recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.82±0.08</td>
</tr>
<tr>
<td>1</td>
<td>0.79±0.14</td>
</tr>
<tr>
<td>100</td>
<td>0.52±0.14</td>
</tr>
<tr>
<td>200</td>
<td>0.43±0.04</td>
</tr>
</tbody>
</table>

Table 4. Measured sand grain/water meniscus contact angle summary for solutions containing both unwashed and washed colloids.

<table>
<thead>
<tr>
<th>Solution ionic strength (mM)</th>
<th>Contact angles (degrees)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unwashed colloids</td>
<td>washed colloids</td>
</tr>
<tr>
<td>0</td>
<td>27.7± 4.3</td>
<td>NA</td>
</tr>
<tr>
<td>1</td>
<td>23.8 ± 2.5</td>
<td>24.5 ± 5.5</td>
</tr>
<tr>
<td>100</td>
<td>28.3 ± 2.7</td>
<td>26.2 ± 1.9</td>
</tr>
<tr>
<td>200</td>
<td>28.3 ± 3.8</td>
<td>28.4 ± 1.5</td>
</tr>
<tr>
<td>overall mean</td>
<td>26.7 ± 3.7</td>
<td></td>
</tr>
</tbody>
</table>
Quantification of colloids retention

Horizontal infiltration chamber

Objective lens

Peristaltic pump

Syringe pump

BTC

Effluent

Influent

7.5 cm

3 cm

1 cm

Sand chamber

Water chamber

Porous plate

Tubing A

Tubing B

Tubing C

Y fitting

Peristaltic pump